Universidad
Auténoma
Metropolitana Posgrado en

Casa abierta al tiempo Azcapotzalco Optimizacion

Energy-Efficient Train Timetables

Discrete Optimization Challenge

Rodrigo Alexander Castro Campos* Sergio Luis Pérez Pérez"
Gualberto Vazquez Casast Francisco Javier Zaragoza Martinez$

July 2015

Team Optimixtli

*Doctoral Student, Graduate Program in Optimization, UAM Azcapotzalco.
"Doctoral Student, Graduate Program in Optimization, UAM Azcapotzalco.
fMasters Student, Graduate Program in Optimization, UAM Azcapotzalco.
SFull Professor, Graduate Advisor, Systems Department, UAM Azcapotzalco.

This is a report of Team Optimixtli’s participation in the Discrete Optimization Chal-
lenge organized by the Friedrich-Alexander-Universitit Erlangen-Niirnberg as part of
their Open Research Challenge.

We describe a mixed integer program formulation corresponding to the optimization
challenge, the optimal results obtained for some instances using an MIP solver, and the
main idea we used to give good solutions (and improve them) for the rest of the instances.

All members of Team Optimixtli participate in the Graduate Program in Optimization
at Universidad Auténoma Metropolitana Azcapotzalco, a public university in Mexico.

Postscript: If you want a short version of the report, see Sections 2.2, 2.3, 2.4, 4.1, and
the first page of Chapter 5.

Contents

Overview

1. The Challenge
1.1. The Task e
1.2. Description of the Optimization Problem

2. Mixed Integer Program Formulation

21. Thelnstances @ e e
2.2. Constants and Decision Variables
23. Constraints e e e e

2.3.1. Departure Constraints

2.3.2. Safety Constraints,

2.33. Waiting Constraints

2.34. Connection Constraints
24. Objective Function
2.5. Mixed Integer Model Generator
2.6. StartingtheSolver
2.7. Recovering Intermediate Solutions
2.8. Transforming MSTinto JSON
29. Results e

3. Ideas for Finding Good Solutions

3.1. Simplification of Objective Function
3.2. Simplification of Power Consumption
3.2.1. Constant Granularity
3.2.2. Variable Granularity
3.2.3. Piecewise Linear Functions
3.3. Dynamic Programming,
3.3.1. Dynamic Programming with Boundaries

4. Modified Mixed Integer Program
4.1. Constant Granularity Mixed Integer Program
4.2. Modified Mixed Integer Model Generator

10
10
12
13
13
13
13
14
14
15
17
18
19
20

21
21
21
22
22
23
23
23

4.3. Solving the Modified Model

44.

Results . .

. Our Results
5.1.
5.2.
5.3.
5.4.
5.5.
5.6.
5.7.
5.8.
5.9.
5.10. Instance 10

Instance 1
Instance 2
Instance 3
Instance 4
Instance 5
Instance 6
Instance 7
Instance 8
Instance 9

. Conclusions

. Mixed Integer Model Generator

. Modified Mixed Integer Model Generator

. Solution Formatter

. Gurobi Interface

27
28
28
29
29
30
30
31
31
32
32

33

35

42

49

51

Overview

This is a report of Team Optimixtli’s participation in the Discrete Optimization Challenge:
Energy-Efficient Train Timetables. This competition is part of the Open Research Chal-
lenge organized by the Friedrich-Alexander-Universitdt Erlangen-Niirnberg (FAU) in
Germany.

Chapter 1 is a verbatim copy of the challenge as found on FAU Open Research Chal-
lenge’s website, it is included here only for completeness and therefore it can be skipped.
Chapter 2 describes an exact mixed integer programming formulation for the optimiza-
tion problem, the process of transforming the given data into a suitable format for a MIP
solver, the instances, and the results (either optimal or failures) obtained. Chapter 3 dis-
cusses several proposals of how to obtain good solutions in those cases where the MIP
solver failed. Chapter 4 describes our main proposal (which we call the constant granu-
larity mixed integer programming formulation), the obtained solutions, and the further
improvements. Chapter 5 displays our best obtained results.

The Appendices contain all the code written to process the data, generate mixed inte-
ger programs, format solutions, and interface with the MIP solver.

1. The Challenge

Railway traffic is the biggest individual electricity consumer in Germany. It amounts
to 2% of the country’s total electricity usage, which equals the consumption of the city
of Berlin. However, the annual electricity cost (1 billion Euros per year) is not only
determined by the total amount of energy used. Electricity contracts of big customers
normally also incorporate a price component that is dependent on the highest power
value drawn within the billing period, i.e. it depends on the timely distribution of the
energy usage. This power component accounts for up to 20% of the energy bill.

In the FAU Open Research Challenge “Energy-Efficient Train Timetables”, the aim is
to optimize the timetables of railway traffic in order to avoid high peaks in power con-
sumption as they lead to high electricity costs. This can be done by desynchronizing too
many simultaneous departures as well as synchronizing accelerating trains with braking
trains to make better use of the recuperated braking energy. Starting with a raw timetable
(before its publication), the task is to shift the departures of the trains from the stations
within small time intervals (several minutes) to come to the final optimized timetable.

1.1. The Task

Your goal is to compute optimal timetables with respect to the above goal. To this end,
you are given problem instances featuring the following data:

1. A railway network in the form of a directed multi-graph.
2. The planning horizon under consideration.

3. A set of trains to schedule, and for each such train:

a) the intermediate stations and tracks traveled,

b) feasible departure intervals for each departure from a station,

¢) minimum stopping times in the stations (for getting on and off),
d) travel times for the tracks,

e) power profiles for each track traveled , i.e. a time-power-curve.

4. For each track in the network, the order in which it is passed by which trains.

5. The necessary safety distances.

The task is to ensure a favorable system-wide power load over the given planning
horizon to minimize the power component of the electricity bill. The system-wide power
load is determined by summing up all the individual power profiles of the trains under
consideration. Obviously, this total power profile changes when shifting the trains in
time. To minimize the power cost of the railway system, you have to minimize the aver-
age power drawn by all trains together over any consecutive 15-minute interval within
the planning horizon.

To achieve this, your task is to come up with models and algorithms to optimize the
departure times of the trains from the stations, keeping to the following requirements:

1. Each train travels the stations and tracks in the order given in data.

2. Each train departure is within the feasible interval for the corresponding station.
3. The minimum stopping time at each station is respected.

4. The trains pass the tracks in the given order and respect the safety distances.

5. Passenger connections at the stations are respected.

The winning team for a given problem instance is the one with the lowest 15-minute
average of power consumption over the planning horizon. This value is summed up over
the 10 instances given in the contest. To win the whole contest, you have to be the team
with the lowest overall value over these 10 instances.

1.2. Description of the Optimization Problem

The degree of freedom in this optimization problem are the departure times of the trains
from the stations. As a part of each problem instance (format description see readme
file), you are given a series of train runs. Each of them consists of a series of legs, i.e.
journeys between two consecutive stations at which the train stops. You are to adapt
the current departure times to form a new timetable which has to respect several side
constraints:

Maximal deviation from the current timetable: Each leg has an earliest and a latest pos-
sible departure time. The new departure has to lie in this interval.

Minimal stopping time: The description of each leg contains a minimum stopping time.
This is the minimal time (in minutes) which the train has to wait at the destination
of the leg before it can depart for the next leg. The corresponding value for the
final leg can be ignored.

Safety distances: Each leg possesses a safety distance value (in minutes). This is the
minimal time which the subsequent train passing the same track has to wait before
it can depart for the corresponding leg. The order of the trains passing a given
track has to be retained.

Passenger connections: At each station, we have to ensure that the passenger connec-
tions established in the original timetable are retained. If the arrival time of one
train and the departure time of another lie in an interval of 5 to 15 minutes, their
new arrival and departure times have to lie in this interval, too.

Under these timetable constraints, you are to find a new timetable that minimizes the
system-wide power cost. The description of each leg contains (in a separate file) the
time-power curve induced by the corresponding train. We assume that this curve as well
as the travel time of the leg are fixed. Summation of the power curves for all trains over
the complete planning horizon (starting at minute 0 and ending with the latest possible
arrival time) leads to the system-wide power curve. Its power cost is determined by
averaging its values over 15-minute intervals. The first such interval starts at minute 0,
the next one at minute 15, etc. The power cost is now given by the value of the highest
such 15-minute average multiplied by a constant cost factor. That means your objective
is to minimize the highest arising 15-minute average of the system-wide power curve.

Your solutions have to fulfill the following requirements in addition to the above rules:

1. Trains may only depart at full minutes in the planning horizon (which starts at
minute zero, second zero). In the timetable data, you find an earliest and a latest
departure time for each leg (given in full minutes). The departure time for this leg
has to be a full minute from this interval.

2. When computing the 15-minute averages , you have to set negative values of the
summed, system-wide power curve to zero! If braking trains provide more energy
than accelerating trains can use at the same time, this energy is lost. That means:
You calculate the system-wide curve by summing over the individual curves of the
trains, depending on their departure times. Then you compute the maximum of
this curve and zero. And then you average over 15-minute intervals — the first of
them starting at minute zero, second zero, and ending at minute 15, second zero,
interval ends including (the next would start at minute 15, second zero and end at
minute 30, second zero).

3. The calculation of the 15-minute average power values follows the trapezoidal rule
for the approximate calculation of integrals as described in the following. Each 15
minute-interval consists of 901 seconds (as the last second is also part of the next
interval). Thus, to compute the average of the system-wide power curve, we sum
over the 899 inner seconds of the interval (with weight 1) and add the value for the

first and the last second with a weight of 1. This value is then divided by 900 - the
length of the interval. The resulting value is the 15-minute average which is to be
optimized (Explanation: without the division by 900, this value represent the total
energy consumed by the trains over that interval — under the assumption that the
system-wide power curve is a piecewise-linear function. Division by the length of
the time interval yields the average power drawn from the system).

. To enable you to check the feasibility of your solutions and the correctness of your
objective values, we provide you with a solution checker (download link below). It
is written for Python 2.7 and is executed as follows: python solution_checker.py
instance-data-file power-data-file solution-file

Together with the solution checker, we also provide two sample solutions for in-
stances 1 and 10 (which correspond to the initial timetable, i.e. to the CurrentDepartureTimes
). Please submit all your solutions in the json-format as in these two examples.
Basically, you have to give one value (in minutes) for the departure time of each

leg. Please pack your 10 solutions to one zip file before uploading.

2. Mixed Integer Program Formulation

We describe the instances of the challenge, an exact mixed integer programming formu-
lation for the optimization problem, the process of transforming the given data into a
suitable format for a MIP solver, and the results (either optimal or failures) obtained.

2.1. The Instances

The challenge contains ten instances with the following statistics:

’ Instance ‘ Trains ‘ Legs ‘ Tracks ‘ Stations

1 13 206 58 30
2 26 241 78 43
3 37 352 139 76
4 48 676 150 84
5 71 863 274 131
6 73 712 221 109
7 126 | 1524 | 308 147
8 182 | 3709 100 51
9 237 | 1808 | 605 265
10 277 | 2641 666 306

Each instance consists of two JSON files with the same number:
1. instance_data_number. json.txt contains the timetable information and
2. power_data_number. json.txt contains the power profiles for each leg.

The information on file instance_data_number. json.txt is organized with the following
fields:

1. int TrainID uniquely identifies each train.
2. int TrackID uniquely identifies each track.
3. int LegID uniquely identifies each train run on a given track.

4. int StartStationID uniquely identifies the origin of the leg.

10

int

int

int

int

o ® N o O

int

10. int

EndStationID uniquely identifies the destination of the leg.

EarliestDepartureTime is the earliest departure time of the leg.

LatestDepartureTime is the latest departure time of the leg.

CurrentDepartureTime is the current departure time.

TravelTime is the travel time to the next station in minutes.

MinimumStoppingTime is the minimum time the trains needs to stay in the fol-
lowing station (if one exists) in minutes.

11. int MinimumHeadwayTime is the minimum time the next train on the same route has
to wait until it can depart.

This is a minimal example taken from instance_data_1.json.txt:

"Trains": [

{

"TrainID": 31698,
"Legs": [

{

"StartStationID": 2716,
"LatestDepartureTime": 4,
"CurrentDepartureTime": 1,
"EndStationID": 6499,
"MinimumHeadwayTime": 2,
"TrackID": 415361,
"EarliestDepartureTime": O,
"MinimumStoppingTime": 1,
"TravelTime": 3,

"LegID": 426408

These data are subject to the following constraints:

1. The trains can only depart every full minute from the EarliestDepartureTime until

LatestDepartureTime.

2. Two consecutive trains using the same track have to satisfy a safety constraint. The
departure of the later train must be greater or equal to the DepartureTime of the
earlier train plus the minimum headway time specified for the earlier train.

11

3. This constraint implicitly enforces the same order of the trains on each track as
established in the original timetable. That means the order of the trains is fixed
and is not part of the optimization.

4. At each station, the new timetable has to respect the passenger connections estab-
lished in the original timetable. If the arrival of one train at a given station and the
departure of another train take place within an interval of 5 to 15 minutes in the
old timetable, this relation has to be preserved in the new timetable.

The information on file power_data_number. json.txt is organized with the following
fields:

1. int LegID correspond to the same LegID as in the instance_data_number.json.txt
and is unique.

2. float Powerprofile[] contains exactly TravelTime*60+1 time steps (seconds), where
the power is measured (in MW).

This is a minimal example taken from power_data_1.json.txt:

{
"Powerprofiles": [
{
"LegID": 426408,
"Powerprofile": [
0.0,
0.029,
-0.027,
0.0
]
}
]
}

2.2. Constants and Decision Variables

The general parameters for a given instance Z are:
1. Let T be the number of trains and 7 be the set of trains.
2. Let L be the number of legs and L be the set of legs.

3. Let K be the number of tracks and K be the set of tracks.

12

4. Let S be the number of stations and S be the set of stations.
For a given leg ¢ € L, we define some constants:

1. Let sy € S be its source (origin) station.
. Let t; € S be its target (end, destination) station.
. Let ey > 0 be its earliest departure time.

. Let I, > 0 be its latest departure time.

2

3

4

5. Let ¢y > 0 be its current departure time.

6. Let ry > 0 be its running (travel) time.

7. Let wy > 0 be its minimum waiting (stopping) time at the target destination.
8. Let hy > 0 be the minimum headway time for the next train on the same track.
9

. For 0 < i < 60ry, let py; be the power consumption measured at second i from
departure.

It is given that ey < ¢, < I for all ¢ € L. Finally, we define the decision variable xy € Z
as the actual departure time for leg ¢ € L.

2.3. Constraints

2.3.1. Departure Constraints

The following departure constraints must hold:

ep<xy<lpforalll e L. (2.1)

2.3.2. Safety Constraints

For each track k € IC, let £y 1, b2, - - ., £k, be the p legs using track k sorted by increasing
departure time, thatis, ¢, | < ¢4, <--- <c¢y . Then the following safety constraints must
hold:

Xpi — Xty > hgk’F] foralll <i<p. (2.2)

2.3.3. Waiting Constraints

For each train t € T, let £;1,4;5,...,4;, be the q legs using train t sorted by increasing
departure time, that is, ¢/, < ¢, < -+ < ¢4,,. Then the following waiting constraints
must hold:

Xg, = Xg, =T, twg, foralll <i<yg. (2.3)

13

2.3.4. Connection Constraints

For each station s € S, let Es_l,és_,z,...,ﬂ; . be the p legs arriving to station s and let
PP AP oy ; be the g legs departing from station s. Then the following connection

constraints must hold:

5<xp+ —(xp-+r,-)<15foralll<i<pand1<j<y, (2.4)
s,j s,i s,i

provided that legs /_; and K:j correspond with different trains and their departure times
satisfy 5 < ¢+ — (¢~ +r,~) < 15.
s,j s, s,i

2.4. Objective Function

All given instances have a planning horizon of 17 fifteen-minutes intervals. For a given
feasible solution x, let f(x,i) be its average power consumption on interval 0 < i < 16.
The value of solution x is then f(x) = max{f(x,i) : 0 < i < 16}. Finally, the objective
value is z* = min{f(x) : x is feasible}. It is not completely obvious that z* is a linear
function of x.

Assume first that we could write f(x,7) as a linear function of x, then it would be easy
to obtain z* in the following way:

z" = minz (2.5)
subject to
f(x,i) <zforall0 <i<16. (2.6)

In order to write each f(x,1) as a linear function of x, we proceed in three steps. First,
for each 0 < s < 17 x 15 x 60, let 7t; > 0 be the total power consumption on second s
(multiplied by 3 if s is a multiple of 900). Therefore:

1 900(+1)
flx,i) = 900 sz%()i TTs. (2.7)

Second, for each leg ¢ € L, and for each ¢, < m < Iy, let yy,, € {0,1} be a binary
variable indicating whether leg ¢ departed on minute m. This can be achieved as follows:

Iy

Y, vem = 1 (2.8)
m=ey

Iy

Z MYypm = Xy (2.9)
m=ey

14

Third, we need to relate the variables 7rs with the variables vy, ,,. In particular, y;,, =1
contributes to the value of 75 if 60m <'s < 60(m +). If s is not a multiple of 900 we
have:

[s/60]
TTs Z E (2 pé,séomyl,m> . (210)
tel \m=[s/60—r/]

Otherwise, if s is a multiple of 900 we have:

1 ls/60]
TTs Z 5 E < Z pf,s—éomyé,m> . (211)
tel \m=[s/60—r/]

Note that in the inner sum, if m < e, or m > I, we can assume y;,, = 0. Also note that
these inequalities allow their right-hand sides to be negative, but 7r; > 0.

2.5. Mixed Integer Model Generator

We will briefly explain the PHP program used to generate the LP files read by Gurobi in
order to find the solutions. The explanation does not contain code since it can be found
in the appendices. On the other hand, the following text explains the program in the
order in which the code appears and indicates the lines of code inside parentheses.

Programs written in PHP can be executed directly from the console, in a similar way
to Python or Java. For example, to generate the model for instance 1, we will execute the
program like this:

php model.php 1

The program automatically reads the instance and power data files. This is convenient
most of the time, but expects the files to be present in the current directory with the
expected names. If the data files could not be read, the execution terminates (2 — 12).

PHP can read objects described in JSON into PHP’s stdClass objects or optionally
translate them to a PHP array representation. We prefer to use the latter if possible.
Unfortunately, the instances are not described in a format we found useful, as most of
the time we want fast access to the information of a leg (using its ID as a key). Because
of this, we reconstruct the data internally and also associate the power wave for each leg
(16 - 29).

We proceed to generate the LP model. We will store its contents in memory and then
we will write it to disk in a single operation; this may improve the performance of the
model generator. In order to do so, we start the output buffering using the ob_start
function: the buffer will capture any printed or echo’ed string instead of sending it to the
standard output (31 — 32).

In the generated model, the z* variable of the objective function (described in chapter
2) is denoted as promedio_intervalo (35 — 36).

15

Some auxiliary functions that will be used in several places through the script are:

e The mapea function. It splits a set of legs based on their value for a given attribute
(for example, EndStationID); such value is then used as an index (42 — 51).

e The compara_3vias. It implements a simple three-way comparison (returning a neg-
ative value, zero or a positive value dependingona < b,a = bora > b respectively
(53 - 56).

e The compara_llegadas. It numerically compares arrival times between two different
legs irrespective of their destinations (58 — 61).

e The compara_salidas. It numerically compares departure times between two differ-
ent legs irrespective of their starting stations (63 — 66).

We denote the variables x; (described in chapter 2) as salida_1. To generate constraints
that ensure that safety distances are not violated, we map every leg by TrackID and then
sort each group by departure time. Consecutive trains that use the same track must
depart with at least MinimumHeadwayTime minutes of difference (70 — 81).

To generate constraints that ensure that minimum stopping times at the destinations
are respected, we do something similar. We map every leg by TrainID and then sort each
group by departure time. The next departure of a train must happen at least TravelTime
+ MinimumStoppingTime minutes after the previous departure (83 — 97).

To generate constraints that ensure that connection relationships are respected, we
map a copy of the legs by EndStationID and another copy by StartStationID. Then we
sort the first one by arrivals and the second one by departures. After that, we check for
each station and for each arrival, which departures are within the interval of what is
considered a connection. PHP does not provide a binary search function and we didn’t
consider important to implement one, but we do prematurely end the search when we
notice we can do so (101 — 140).

Generating the linearization constraints of the objective function is a bit more com-
plicated. Before generating any constraint and in an attempt to decrease the file size of
the generated model, we calculate for each interval the set of departure times per leg
that may affect its power wave. We also define an auxiliary function accede that returns
the power level of a power wave in a given second; it returns zero if the offset is out of
bounds (144 - 163).

We denote the variables y,,, (described in chapter 2) as salida_1_m. With this infor-
mation, we calculate the sum of all power contributions per second per interval. All
(non-zero) power contributions are added to the corresponding seconds” power level
when a binary variable salida_1_m has a value of 1. To implement the trapezoidal rule,
we simply divide by 2 the power contributions at seconds that are multiples of 900 (that

16

is, the first and last second of each interval). The sum of power contributions at second i
is represented as the model variable segundo_i. The total power of an interval is the sum
of the variables segundo_i included in such interval. We then specify that the objective
function variable promedio_intervalo must be greater than or equal to the sum of each
interval. We do not divide this value by 900 as this can be done after solving the model
(167 - 200).

The constraints that force the binary variables salida_1_m to 1 if salida_1 = m (and to
zero otherwise) as described in chapter 2 can be generated without difficulties. We finish
the generation of the LP file by writing the types and bounds for each variable. The
bounds for the salida_1 variables are simply those of the earliest and latest departure
times. It is important not to forget to set the bounds for the segundo_i variables, since
the power level of a second could be negative otherwise (204 — 234).

To retrieve everything stored in the output buffer and write it to disk at once, we use
the PHP functions ob_get_clean and file_put_contents. We also generate the MST file,
which will contain an initial feasible solution that Gurobi can read. This file is generated
using the current departure times (260 — 267).

2.6. Starting the Solver

The Gurobi Optimizer can be started in multiple ways. For example, the program
gurobi_cl offers a command line interface to Gurobi. In fact, all Gurobi parameters
can be set using the command line interface.

In our experiments, we used non-default values for the following parameters (sorted
by importance and frequency of use):

e The InputFile parameter. A path to an MST file with an initial feasible solution.
e The ResultFile parameter. The path where to store the optimal solution if found.

e The MIPFocus parameter. An integer between 0 (the default) and 3, where 1 tells
Gurobi to focus on finding good solutions, 2 to focus on proving the current solu-
tion is optimal, and 3 to focus on raising the lower bound.

e The MIPGap. If Gurobi proves that the current solution is less than MIPGap percent
away from the optimal, the optimization terminates.

e The Threads. It limits the number of concurrent threads Gurobi uses during the MIP
optimization. Reducing the number of threads probably reduces the performance
but also lowers the memory requirements, as every thread needs a copy of the
model.

17

e The ImproveStartGap. Gurobi will dinamically give up on proving optimality and
will change its focus on improving solutions after a certain MIP Gap is reached.

e The Heuristics. An integer between 0 and 1 that indicates the percentage spent on
heuristic algorithms.

e The cuts. An integer between -1 (the default) and 3 that indicates the level of
aggressiveness of the cut generator.

We also tried to use the NodefileStart parameter to allow Gurobi to dump inactive
data to disk in order to free some RAM, but it triggered runtime errors. Most of the time
we used MIPFocus=2.

The path to the model file is the last (nameless) parameter specified in the command
line. For example, we can solve instance 1 with the following command:

gurobi_cl InputFile=modell.mst ResultFile=resultl.mst MIPFocus=2
MIPGap=0 modell.lp

Using the command line interface, only the last solution found will be written to
disk and this is done after the optimization ends. If the model is taking too long to
reach optimality, terminating the process is necessary in order to recover the best current
solution.

2.7. Recovering Intermediate Solutions

We will briefly explain the C++ program used to write to disk the sequence of solutions
found by Gurobi. The explanation does not contain code since it can be found in the
appendices. On the other hand, the following text explains the program in the order in
which the code appears and indicates the lines of code inside parentheses.

Programs written in C++ can be executed directly from the console and they can use
Gurobi as a library. We have compiled it under Windows and Linux. Under Windows,
we used Visual Studio 2013 with the following commands:

"C:\Program Files (x86)\Microsoft Visual Studio 12.0\VC\vcvarsall.
bat" x64
cl gurobi_cpp.cpp /EHsc gurobi60.1lib gurobi_c++mt2013.1ib

The LIB files may be found in the Gurobi installation folder; we simply copied them
to the current working directory. Under Linux, the following command may be used
(assuming the installation is at the specified folders):

g++ gurobi_cpp.cpp -std=c++11 -I"/opt/gurobi604/linux64/include"
"/opt/gurobi604/1linux64/1ib/libgurobi_c++.a" "/opt/gurobi604/
linux64/1ib/libgurobi.so.6.0.4" -03 -o gurobi_cpp

18

Gurobi has many parameters but our program does not support them all. This is
important to note, since every non-default parameter must be set using the Gurobi APL
In most of our experiments, we only specified the InputFile, ResultFile, MIPFocus and
MIPGap parameters. Thus, our C++ program needs (and actually requires) the first three
parameters plus the LP model; the MIP Gap will always be set to 0, which is a non-
default value. For example, we can solve instance 1 with initial solution at initiall.mst,
optimal solution to be stored in optimall.mst and a MIP focus of 2 with the following
command:

./gurobi_cpp initiall.mst optimall.mst 2 modell.lp

The C++ program sets the parameters via the Gurobi API and reads the model. The
Gurobi API throws an exception when an error is found (for example, unable to read
file), but we do not catch it. This may cause the program to abort (36 — 48).

After reading the input, we install a callback that Gurobi will invoke each time an event
is recorded during the MIP optimization. The event GRB_CB_MIPSOL is signaled when a
new feasible solution is found, so we load the current values of the model variables
and write them in an MST file named with the model name, the string "_temp" and the
objective value of the current solution (48 — 49, 6 — 32).

If the model is feasible and after the optimization ends, we write the optimal solution
to disk (50 — 54).

2.8. Transforming MST into JSON

We will briefly explain the PHP program used to generate the JSON files from the MST
files that Gurobi writes as solutions. The explanation does not contain code since it can
be found in the appendices. On the other hand, the following text explains the program
in the order in which the code appears and indicates the lines of code inside parentheses.

The program needs the instance number and the MST file. For example, to the process
solutionl.mst for instance 1, we will execute the program like this:

php mst_handler .php 1 solutionl.mst

The program does not validate feasibility, but does evaluate the objective function.
Because of this, it automatically reads the corresponding power data file. This is conve-
nient most of the time, but expects the file to be present in the current directory with the
expected name. If the data files could not be read, the execution terminates (2 — 12).

PHP can create stdClass objects and write them into JSON. From the MST file we
extract the information of the variables x; denoted as salida_1, constructing an stdClass
object in the process. Since Gurobi is a branch-and-cut solver that uses floating point
arithmetic, it may happen that some values are non-integers: Gurobi’s default integer

19

feasibility tolerance is 1E-05. We have noticed this does not happen for the salida_1
variables but sometimes does for the salida_1_m variables, which we ignore anyway.
Nevertheless, we round the wanted values and cast them to integers. (17 — 33).

Some MST files may contain information about unwanted variables (for example,
segundo_i) so we also purge the original MST file. We then write the resulting JSON
code to disk in a single operation (36 — 37).

To compute the objective function, we simply calculate the sum of power contributions
for each second and then the sum of power contributions for each interval, using the
trapezoidal rule where needed. Negative power levels are zeroed when added to the
power consumption of an interval (40 — 68).

2.9. Results

The models for the ten instances have the following number of constraints:

’ Instance | Departure ‘ Safety ‘ Waiting | Connection

1 206 148 193 21

2 241 163 215 31

3 352 213 615 68

4 676 526 628 274
5 863 589 792 210
6 712 491 639 184
7 1524 1216 1398 1035
8 3709 3609 3527 17261
9 1808 1203 1571 985
10 2641 1975 2364 1773

After running the solver, five instances were solved to optimality, while the other five
instances ran out of memory:

Instance | Current value ‘ Optimal value ‘ Improvement

2 4.620948333 2.939638333 36.38%
3 20.635706111 | 15.179507777 26.44%
4 19.983620000 | 14.966736111 25.10%
5 27.551612222 | 19.416015000 29.53%
6 26.349433888 | 20.431125556 22.46%

20

3. Ideas for Finding Good Solutions

We sketch two main ideas of how to obtain good solutions and good lower bounds in
those cases where the MIP solver failed. They are simplifications of the objetive function
and of the data. We also sketch a dynamic programming approach to solve the problem.

3.1. Simplification of Objective Function

Our first simplification is straightforward: instead of computing the objetive function
with the trapezoidal rule, simply sum the power consumption over each 900 seconds
interval. In other words, do not use Equation 2.7 while looking for solutions.

3.2. Simplification of Power Consumption

Our second simplification is also simple: instead of using the data for each second, group
the data with certain granularity and average it. Hence, instead of having a variable for
each second’s power consumption, we would only have a variable for each subinterval.
In all figures, a red dot means power consumption, a blue dot means power generation.

awen?*”

i
“,d'

Figure 3.1.: A typical power consumption wave.

An interesting property of granularity and averaging is as follows: Consider a fixed
fifteen-minutes interval i and a fixed schedule x' for the legs running during that interval.
Partition interval 7 into a set A of subintervals and further refine this partition into a set B
of subintervals. Let f4(x,i) be the power consumption evaluated using power averages
over each subinterval in A and let fz(x’,i) be the power consumption evaluated using
power averages over each subinterval in B. Then f4(x',i) < fg(x',i). Furthermore, if x7
is a minimizer of f4 and x} is a minimizer of fg, then fa(x%,i) < fa(xj, i) < fp(x},).
In particular, for an arbitrary partition A we have the lower bound f4(x%,i) < f(x*,i).

21

3.2.1. Constant Granularity

Since each interval consists of 900 seconds, it is natural to group the power consumption
data in 2 intervals of d seconds. We discuss this idea further in the next chapter. Note
that if d1|d> and d»]900, then fy,(x%,i) < f; (x',i). In particular, given a d|900 we have

fa(x;,1) < fi(x*,i) = f(x*,i). Hence, we have a lower bound to the original problem.

oove
escoe essce

Figure 3.2.: A power consumption wave averaged over 5 seconds subintervals.

3.2.2. Variable Granularity

On further inspection of the power consumption data, we noted that each leg goes
through five stages (or less) of power consumption:

1. Almost linearly increasing power consumption.

2. Almost constant maximum power consumption.
3. Almost constant cruise speed power consumption.
4. Almost constant maximum power generation.

5. Almost linearly decreasing power generation.

Therefore, it would also be natural to split the power consumption data over this five
stages and average in each of them. We noted that sometimes only the first, third, and
fifth stages occur. We also noted that sometimes the third stage generates power.

Figure 3.3.: A power consumption wave averaged over each stage.

22

3.2.3. Piecewise Linear Functions

Given the behavior described above, one could also model the power consumption as a
piecewise linear function with five (or three) pieces. Each of these linear functions could
be computed using, for instance, linear regression.

=y
ol
00®'

Figure 3.4.: A power consumption wave approximated by a piecewise linear function.

3.3. Dynamic Programming

For each 0 < i < 16, let £; be the set of legs that may be running during the i-th fifteen-
minutes interval in the planning horizon and let &; be the set of feasible assignments to
the variables corresponding to legs in £;. Note that a leg may belong to one or more
consecutive intervals. Also note that the power consumption during the i-th fifteen-
minutes interval only depends on the assignment x' € X;. We say that x'~! € X;_; and
x' € X; are compatible if they coincide in £;_; N £;, and satisfy all required constraints.
For x' € X, let g(x',i) be the minimum of the maximum power consumption over the
fifteen-minutes intervals 0, ..., given that interval i is scheduled with x'. Then

2(x%,0) = f(x°,0) for all x° € Ap (3.1)
and, forall1 <i < 16and all x' € &,

g(x,i) = _min (max(g(x'~1,i—1), f(x',i)) : ¥’ ! and x’ are compatible). (3.2)
xle X,

i—1

Finally, let ¢(i) = min(g(x’,i) : x' € &;). It follows that g(0) < g(1) < --- < g(16) = z*.

3.3.1. Dynamic Programming with Boundaries

It turns out that the sets A; are too large and, therefore, the computation of all g(x/, 1)
would be too slow. We obtain an improvement if, instead of considering all legs in £;,
we only consider the assignments to boundary legs, that is, those legs in £; that constrain
the assignments of legs in either £;_; or £;;1. In this way, there would be fewer g(xi, i)
computed, but each of these computations would be more expensive. In either case, the
computation could be accelerated by implementing it in parallel for each stage i.

23

4. Modified Mixed Integer Program

We describe an approximate mixed integer programming formulation for the optimiza-
tion problem, based on the idea of constant granularity, and the results obtained.

4.1. Constant Granularity Mixed Integer Program

The mixed integer program that we propose is a modification of our previous exact
model. All variables x, and y,,, retain their meaning, but variables 77; change their
meaning into the total power consumption over a subinterval of a few seconds. There-
fore, we only explain how do we compute a modified objective function.

Let d be a divisor of 900. For a given feasible solution x, let f;(x, i) be its average power
consumption on interval 0 < i < 16, computed using the average power consumption in
subintervals of d seconds. The value of solution x is then f;(x) = max{f;(x,i) : 0 <i <
16}. Finally, the objective value is z; = min{f;(x) : x is feasible}.

If we write f;(x,1) as a linear function of x, then it is easy to obtain z} as follows:

z; = minz (4.1)
subject to
fa(x,i) < zforall 0 <i<16. 4.2)

In order to write each f;(x,1) as a linear function of x, we proceed in three steps. First,
foreach 0 < s < %17 x 15 x 60, let 7t; > 0 be the total power consumption on the time
interval [ds,d(s + 1)] in seconds. Therefore:

1 900(i+1)/d—1
fa(x,i) = — Z TTs. (4.3)
900 _5001/a
Second, for each leg ¢ € L, and for each ¢y < m < Iy, let y;,, € {0,1} be a binary
variable indicating whether leg ¢ departed on minute m. This can be achieved as follows:

Iy

Y o yem = 1 (4.4)
m=eyp

ly

Y myom = x (4.5)
m=ey

24

Third, we need to relate the variables 7rs with the variables vy, ,,. In particular, y;,, =1
contributes to the value of 715 if 60m < ds < 60(m + ry).

|ds/60] d—1
Tts > Z (Z (Z pﬂ,dséOerk) yé,m) . (4.6)

tel \m=[ds/60—r,] \k=0

Note that in the middle sum, if m < e, or m > I, we can assume y;,, = 0. Also note that
these inequalities allow their right-hand sides to be negative, but 7r; > 0.

4.2. Modified Mixed Integer Model Generator

There are only minor differences between the exact model generator and the constant
granularity model generator. The first difference is that the granularity g must be pro-
vided as an extra command argument and it must be a divisor of 900 (2 - 17).

The next difference is that the sum of power contributions at second i (where i is a
multiple of g) is itself added to those for seconds i + 1, i + 2, ... i + g - 1. To implement
something compatible with the trapezoidal rule, the second 0 relative to each interval is
half-added while the second 900 is ignored. The variables segundo_i no longer exist in
the model; the variables that contain the sum of all power contributions in a group of g
seconds are denoted as segmento_i (179 — 206).

Finally, the file name of the generated LP file has the suffix g added (269).

4.3. Solving the Modified Model

An optimal solution found for granularity greater than 1 is not necessarily optimal for
granularity equal to 1. In fact, an optimal solution for a coarse granularity is often
worse than good but not optimal solution for a fine granularity, as the former is too
specialized for the coarse model. However, when a mediocre solution did not improve
quickly with the exact model, it often happened that the first improved solutions for
coarse granularities were much better than it in the exact model. Furthermore, those
better solutions were found in a matter of seconds.

Using a good starting solution affects Gurobi in strange and noticeable ways. The
search tree prune and also the Gurobi heuristics become more effective, decreasing the
overall runtime and more importantly, the memory consumption. Many were the times
when Gurobi ran out of memory while solving the exact model, and a better upper
bound found using granularities allowed the exact model to delay such situation in later
executions, increasing the chance of finding even better solutions.

25

4.4. Results

Using constant granularity, we were able to obtain good solutions for all instances that
were not solved before. The following table summarizes these results. The results in
bold were used to continue our work.

’ Inst. ‘ Current value ‘ g ‘ flxg) ‘ Impr. ‘ fe(xg) ‘ Gap
1 1.778052222 | 20 | 1.09065 | 38.66% | 1.04635 | 4.06%
21.700938333 | 60 | 16.33821 | 24.71% | 16.32999 | 0.05%
21.700938333 | 50 | 16.67676 | 23.15% | 16.29276 | 2.30%
21.700938333 | 45 | 16.54990 | 23.74% | 16.29961 | 1.51%
21.700938333 | 9 | 16.38669 | 24.49% | 16.30985 | 0.47%
2.772963333 | 60 | 2.56884 | 7.36% 2.23526 | 12.99%
2.772963333 | 50 | 2.55792 | 7.76% 2.19013 | 14.38%
2.772963333 | 45 | 2.51708 | 9.23% 2.19154 | 12.93%
2.772963333 | 9 244258 | 11.91% | 2.28935 | 6.27%
2.772963333 | 2 242464 | 12.56% | 2.42195 | 0.11%
113.391771111 | 60 | 98.40077 | 13.22% | 98.10779 | 0.30%
113.391771111 | 45 | 98.17457 | 13.42% | 98.09943 | 0.08%
113.391771111 | 9 | 98.16771 | 13.43% | 98.09419 | 0.07%
113.391771111 | 6 | 98.16771 | 13.43% | 98.09419 | 0.07%
113.391771111 | 2 | 98.13391 | 13.46% | 98.09419 | 0.04%
79.585383888 | 60 | 68.16482 | 14.35% | 68.10658 | 0.09%
79.585383888 | 45 | 68.14369 | 14.38% | 68.08756 | 0.08%
79.585383888 | 9 | 68.14079 | 14.38% | 68.10320 | 0.06%

O O O O O 0 00 0 0 0 NI N NI\

e G
o O O

26

5. Our Results

For each instance, we collect the original objective value, our best objective value, the
improvement (as a percentage), our best lower bound, and the optimality gap (as a
percentage). The last line is the total over all instances.

’ Inst. ‘ Current value ‘ Our best value | Impr. | Lower bound ‘ Gap ‘
1 1.778052222 1.071813889 | 39.72% 0.994686978 | 7.20%
2 4.620948333 2.939638333 | 36.38% 2.939638333 | 0.00%
3 20.635706111 | 15.179507777 | 26.44% | 15.179507777 | 0.00%
4 19.983620000 | 14.966736111 | 25.10% | 14.966736111 | 0.00%
5 27.551612222 | 19.416015000 | 29.53% | 19.416015000 | 0.00%
6 26.349433888 | 20.431125556 | 22.46% | 20.431125556 | 0.00%
7 21.700938333 | 16.321493889 | 24.79% | 16.308135556 | 0.08%
8 2.772963333 2424517778 | 12.57% 2.424517778 | 0.00%
9 | 113.391771111 | 98.133795000 | 13.46% | 98.133674222 | 0.00%
10 79.585383888 | 68.121432222 | 14.40% | 68.115126000 | 0.01%

’ T \ 318.370429443 | 259.006075555 | 18.65% | 258.909163089 \ 0.04% ‘

In what follows, we display power consumption in two figures for each instance: the

first for the given schedule, the second for our best result.

As before, a red dot means power consumption, a blue dot means power genera-
tion. However, to avoid clutter in this chapter, each dot represents an average power
consumption over one minute. The vertical scale accommodates the maximum instanta-
neous power consumption as given in the current schedule!, while the horizontal scale

accommodates the 17 fifteen-minutes intervals. This scale holds for both figures.

We also display in light red the average power consumption (and in light blue the
average unused power generation) on each fifteen-minutes interval. In this case, the ver-
tical scale accommodates the maximum average power generation on a fifteen-minutes
interval as given in the current schedule. This scale also holds for both figures.

LA black dot in the second figure means that our solution exceeds this instantaneous maximum.

27

5.1. Instance 1

N N o | o & . -:'.' . o o R .:. o ::.. .'o. AN -'.
o oo | P o ..' LK '..:.-.l oole’ 0% ®loe|cn. %[0 snlo e | o o |0 Ce el
Figure 5.1.: The original input for instance 1.
R 0 O O B P P Tl o] = - ud " j ol%le . ‘o, ® o
ol [%o o A oot % 0 -y oo %o o, o [* °. X .o.p. o
HEEEENEEEEEEEEE AR HERRRENE
Figure 5.2.: The best output for instance 1.
5.2. Instance 2
ael ® ‘. .-o = 0 - ‘.:
Od: o o o|® . o ¢ o o
RN [T
Figure 5.3.: The original input for instance 2.
o:".'ﬁ.. .0..'-. ~..—.'o-. .-.:‘ —4. 7 .'. . > S :: .’-.'.‘ * :' '-' .'.0 .- -~ : .%:...O #-‘. % o'. ®e " .
B o e e B B e
[T PPl

Figure 5.4.: The optimal output for instance 2.

28

5.3. Instance 3

.. . () ‘
N d'. . o o ° : o R "'u ~ :‘ o | o % - " +;
) w5 o . ® e 0 oo o . * e T e o AN o ©
o0, 0epe [0S ol® | A X ol . A o %, Q
‘.. e ,.0 - ik ¥ o P, P) :": ‘: S .e“. : o ° . sp‘; %
. .I ° r
N]]
Figure 5.5.: The original input for instance 3.
o % o :0 :o.’ & ° o | o % ‘e '.o o .iL Py |
. .-...0.’. 0.. . ~. J '. '. % o0 ool o .. . o .. o ..' o -' A; —.o . o I
o« W e %’ ' h ' . o a% © * olg® ‘ad O] %
BdK

Figure 5.6.: The optimal output for instance 3.

5.4. Instance 4

< ol J oo
0 \. N ° ~ 'd : e ‘0 o0 : ° :‘.) o k., °
> .:.. “ *le |°F° |o e b - " °° . |% ‘:’ . ':. :.. 'Y
R g . ot e o \’o.’- .| oo b0 b ..'.... : | % o Pe 'o.. o~
N L/ .“T ° -
\ o] o
Figure 5.7.: The original input for instance 4.
9
.l o 3 Co |, ° %lele |o o °le n. o [%» o o y o
e o "’~" ° e . 2 o . 20 d o %o ® % ’ g P o0 e, °
: - ® o o o A DN g. * % .‘ ‘e .9 Ll o ® °° o e®e| oo
I % Ly i o
[+ [

Figure 5.8.: The optimal output for instance 4.

29

5.5. Instance 5

- o ol -.' Sl . o o ‘¢ o o e . et
. :~~' o :'. °- . o‘..". h 0.. oo ® o K ~J~"of \o.o.‘.’. ‘..ﬁl...‘i. . .
& P o ® ® | % e . ° Ka : & T b 0 5 A ' LY "'. o '.
Figure 5.9.: The original input for instance 5.
i - s ey R ..o § b AN PR ° .
q...6.':.. o : .‘o.. - o. ® XA ol f. . j ’-. o ~.. -.. ,. o -. 5 - .- .: %~
o ® o o '- o % .c.n C o o 9 -~ LK 4 o % .' » %y, .' I~ P
) T
Figure 5.10.: The optimal output for instance 5.
5.6. Instance 6
L)l L] ‘. ‘
. . _". K o -~ A oty .-'.' o % . e ° o
.i-"-’ X ".° S - F) .. s .'f * | e b | % ® ~.'- f... oo % o -~ . S .ﬁb.. K3 -‘ g o e o
o & M o Ul & oo o o .o'. S °
[] 'y I. 3 Yy
| []
Figure 5.11.: The original input for instance 6.
('Y ®
J ® P L4
) " o o
. L ° ¢ i Yo > .. ® (ele AR oo ° .'. :’ L)
'\.. L nd 0 o '_' 5 ". Yl ot ® o LA ® .:." -‘.. o P | o o .- . A o '-. YN
'o.: [‘e ° S o® ': *le o o® o ® o
i

Figure 5.12.: The optimal output for instance 6.

30

5.7. Instance 7

e.~q._ DA Plo e o * ° oo - '. < oo
-." o % ‘o e *ple °% %' o %l . oy P "_ 9 . L) .‘.. o | o 4 *Te .
g“. 3 .o. K 1". o N . .o .. 5 .\..'b o
o O . el 0 .
[L[]
Figure 5.13.: The original input for instance 7.
d %% * ~. A L ® o o . . . %se id
ol By © o L ° oa® ° . o ° . o ¢ : " ee PSR Pl 2 Qo o e A
O PN, | e W w | Ve T e % p | % ~ | Josl | F e oo
w-_

hlEEE

Figure 5.14.: The best output for instance 7.

5.8. Instance 8

. hd L hd L] Ad
0 0 o ° . o 0 . ° . . o . . . O O o

0 Qf...d'... ® ...nl". \l..’ ’0..'f4 J-‘. qf..:h... o ."4". Q’.“ul'.“'p Pl - 4 Jh... 0y ."u". \f,.' o...of

Figure 5.15.: The original input for instance 8.

o o o ® ° o o ol o . * ° q o * ol ol ° ® | o o
-‘\':,"o o oo e, KR R e A A O N R A P B S AT ISPC NT CT C pR A Y -

B e e e e
8 A

Il
|

Figure 5.16.: The optimal output for instance 8.

31

5.9. Instance 9

o
‘ L] K
o Po .0.5. o, oo o, b . 0" o N oo’ lo ‘a2 ',. 2o, o,
A SRS A K ~te Ny IS o o | o o o
‘o ° R | o ™
N
Figure 5.17.: The original input for instance 9.
R - PR ™~ -, ."_ @ " .“5... & 0 e, oy Po, | @ ~ %, 'o o
o pt o -. o o~-. & e | o o -: A s. . c~. “ .) S o .. ~‘
° ': .u J’~ 'd'.-
Figure 5.18.: The best output for instance 9.
5.10. Instance 10
NOBRE K N e ople :- :4" 0 o % %) .'J.o (LN oo, o,

\5:-.~~ o .h. -y - .'. A 'ﬁ. 'w ..-‘ AR AN o .%.- AR -. -ﬂ..-. o

% ey e L) ~

(s
Figure 5.19.: The original input for instance 10.
. s &% ‘- :. ‘. * e .-. o ". o % Y : ‘\ :.. - \: . .. o" o EA
."..~-. o o “e o K K D : “ '. Cd .: % o » %. °l % J .:) o o. 9
o g . & =4 o [.U oo
[[T 1]

Figure 5.20.: The best output for instance 10.

32

6. Conclusions

We approached FAU’s Optimization Challenge from a mathematical programming per-
spective, that is, building a mixed integer programming model and solving it via a MIP
solver. This proved to be easier said than done: being our computational resources very
limited, the MIP solver hit rapidly the maximum memory that we had available.

Therefore, we tried several other algorithmic approaches, but again our limited com-
putational resources disallowed nice techniques such as dynamic programming. It was
then that we decided for a heuristic approach, but one that was fit for the purpose.

The idea of simplifying the power consumption waves via averaging with a fixed gran-
ularity was very successful. First, within our limited resources, it allowed the MIP solver
to find near-optimal solutions to this modified problem that were already big improve-
ments over the given schedule. Second, it came as a bonus that the modified problem
gave us simultaneously good upper and lower bounds to the optimal solution. Third, it
also allowed us to restart the MIP solver using these solutions in order to obtain near-
optimal solutions to the original optimization problem.

An unexpected deficiency of the near-optimal solutions obtained is related to peak
power consumption. This happens in our solutions to instances 3-7 and 9, where the
new peak power consumption is greater than the initial peak power consumption. In a
more realistic setting, there should be a constraint related to peak power consumption.

Another deficiency of our near-optimal solutions is that sometimes our schedule wastes
more generated power than the original schedule. This usually happens at the end of
the planning horizon: the last fifteen-minutes interval (and often the previous one too)
does not reach the maximum average power consumption (in fact, its consumption is
almost negligible). We could think of a secondary objective: to minimize the total power
consumption (or, equivalently, to minimize the total unused power generation).

33

Acknowledgments

Along this particular stretch of
line no express had ever passed.
All the trains — the few that there
were — stopped at all the stations.

(Aldous Huxley, Crome Yellow)

We thank the Mexican National Council on Science and Technology (CONACyT) for
providing scholarships to most students in our graduate program (including two team
members) and also for providing a scholarship to another team member through the
National System of Researchers (SNI). We thank the Mexiquense Council on Science and
Technology (COMECYyT) for providing a scholarship to our last team member.

We thank Universidad Auténoma Metropolitana Azcapotzalco (UAM A) for allowing
us the use of some computing facilities through the Systems Department.

We thank Gurobi Optimization for giving us free licenses to their software.

Last, but not least, we thank honorary team member Gabrijela Zaragoza for proposing
a nice team name, a portmanteau of optimization and the nahuatl word mixtli (cloud).

34

10

15

20

25

30

A. Mixed Integer Model Generator

<?7php

if (!isset($argv[1])) {
die("Usage: {$argv[0]} #instance");

}

$numero = (int) $argv[1];

$instancia = json_decode(@file_get_contents("instance_data_{
$numero}. json.txt"), true);

$consumo = json_decode(@file_get_contents("power data_ {$numerol.

json.txt"), true);

if (!'isset($instancia, $consumo)) {
die("{$argv [0]} {$argv[1]}: unable to,read the input files");
}

$corridas = [];

foreach ($instancial[’Trains’] as $trenes) {
foreach ($trenes[’Legs’] as $corrida) {
$corridas[$corridal[’LegID’]] = $corrida + [’TrainID’ =>
$trenes[’TrainID’] J;

foreach ($consumo[’Powerprofiles’] as $onda) {

$corridas[$ondal[’LegIiD’]][’Powerprofiles’] = $ondal[’Powerprofile

7];

unset ($instancia);
unset ($consumo) ;

ob_start(); {

35

35

40

45

50

55

60

echo "minimize\n'";

echo "\tpromedio_intervalo\n";

echo "subject to\n";

function mapea($corridas, $atributo)

’

{
$arr = [1;
foreach ($corridas as $corrida) {
$arr[$corridal[$atributo]][] = $corrida;
}
return $arr;
}
function compara_3vias($a, $b)
{
return 2 *x ($a > $b) - ($a != $b);
}
function compara_llegadas($corridal, $corrida2)
{
return compara_3vias($corridal[’CurrentDepartureTime’] +
$corridal [’TravelTime’], $corrida2[’CurrentDepartureTime’]
+ $corrida2[’TravelTime’]);
}
function compara_salidas($corridal, $corrida?2)
{
return compara_3vias($corridal[’CurrentDepartureTime’],
$corrida2[’CurrentDepartureTime’]) ;
}

echo "\\\theadways\n";

foreach (mapea($corridas, ’TrackID’) as $corridas_via) {
usort ($corridas_via, ’compara_salidas’);
for ($i = 1; $i < count($corridas_via); ++$i) {

36

$corrida = $corridas_vial$il;
$anterior = $corridas_vial[$i - 11;

echo "\tsalida_{$corridal’LegID’]}, - salida_{$anterior[’

LegID’]}, ,>=,{$anterior[’MinimumHeadwayTime *]}\n";
80 }

85 echo "\\\tstopsyatystations\n";

foreach (mapea($corridas, ’TrainID’) as $corridas_tren) {
usort ($corridas_tren, ’compara_salidas’);

90 for ($i = 1; $i < count($corridas_tren); ++$i) {
$corrida = $corridas_tren[$i];
$anterior = $corridas_tren[$i - 1];
$viaje_con_parada = $anterior[’MinimumStoppingTime’] +

$anterior [’ TravelTime’];

95 echo "\tsalida_{$corridal[’LegID’]} ,-,salida_{$anterior [’
LegID’]1},>=,{$viaje_con_paradalt\n";

100

echo "\\\tconnections\n";

$llegadas = mapea($corridas, ’EndStationID’);
$salidas = mapea($corridas, ’StartStationID’);
105 $estaciones = array_unique(array_merge (array_keys($llegadas),
array_keys ($salidas)));

foreach ($estaciones as $estacion) {
if (!isset($llegadas[$estacion])) {
$llegadas[$estacion] = [];
110 }

if (lisset($salidas[$estacion])) {
$salidas[$estacion] = [1;

115

usort($llegadas [$estacion], ’compara_llegadas’);

37

120

125

130

135

140

145

150

155

usort ($salidas [$estacion], ’compara_salidas’);

foreach ($salidas[$estacion] as $salida) {
foreach ($llegadas[$estacion] as $llegada) {
$diferencia = $salida[’CurrentDepartureTime’] - ($llegadal
’CurrentDepartureTime’] + $llegadal’TravelTime’]);

if ($diferencia < 5) {

break;

if ($diferencia > 15) {
continue;

}
if ($salida[’TrainID’] != $llegadal[’TrainID’]) {
$inferior = $llegadal[’TravelTime’] + 5;
$superior = $llegada[’TravelTime’] + 15;
echo "\tsalida_{$salidal[’LegID’]} -ysalida_{$llegadal’
LegID’]1} >=y{$inferior}\n";
echo "\tsalida_{$salida[’LegID’]}_ -ysalida_{$llegadal’
LegID’]1},<=y{$superior}\n";
}
}
}
}
$intervalos = []1;

function accede($onda, $offset)
{
return ($offset < 0 || $offset >= count($onda) 7 0 : $ondal
$offset]);

foreach ($corridas as $corrida) {
$pri = $corridal[’EarliestDepartureTime’];
$ult = $corridal[’LatestDepartureTime’];

for ($i = $pri; $i <= $ult; ++$i) {
$bloque_ini = (int) ($i / 15);
$bloque_ult (int) (($i + $corridal[’TravelTime’]) / 15);

38

for ($j = $bloque_ini; $j <= $bloque_ult; ++$j) {
160 $intervalos [$j] [$corridal[’LegiD’]1[] = $i;
}

165
echo "\\\tlinearization constraints, -, power consumption\n";

foreach ($intervalos as $bloque => $datos) {

170 $segundo_ini = 15 * 60 * $bloque;

$segundo_fin = 15 * 60 * ($bloque + 1);

$sumandos = [’promedio_intervalo’ J;

for ($i = $segundo_ini; $i <= $segundo_fin; ++$i) {
175 $contribuciones = [1;

foreach ($datos as $indice_corrida => $salidas) {

$corrida = $corridas[$indice_corridal;
180 foreach ($salidas as $salida) {
$contribucion = accede($corridal’Powerprofiles’], $i -
60 * $salida) / (1 + (int)($i % 900 == 0));
if ($contribucion != 0) {
$contribuciones[] = "{$contribucion} salida {$corrida
[’LegID’]}_{$salidal}";
185 }
}
}
if (empty($contribuciones)) {
190 echo "\tsegundo_{$i} =,0\n";
}
else {

echo "\t", implode(’ +,’, $contribuciones), " -,segundo_{
$i}u<:u0\n” 5

195

$sumandos [] = "segundo_ {$i}";

echo "\t", implode(’,-’, $sumandos), " ,>=,0\n";

39

200

205

210

215

220

225

230

235

240

echo "\\\tlinearization,constraints,-,integer to binary
variables\n";

foreach ($corridas as $corrida) {
$sumal = [];
$sumap = [1;

$corrida[’EarliestDepartureTime’];
$corridal[’LatestDepartureTime’];

$pri
$ult

for ($i = $pri; $i <= $ult; ++$i) {
$sumal[] = "salida_ {$corridal’LegID’]} {$i}";
$sumap[] = "{$i}, salida_{$corridal[’LegID’]1} {$il}";
¥

echo "\t", implode(’ +,’, $sumal), ", ,=,1\n";

echo "\t", implode(’ +,’, $sumap), ", -ysalida_ {$corridal[’LegID
>1}u=00\n";

echo "bounds\n";
foreach ($corridas as $corrida) {
echo "\t{$corrida[’EarliestDepartureTime’]} <= salida_A{
$corridal[’LegID’]1} <= {$corrida[’LatestDepartureTime’]}\n";

$ultimo_segundo = (max(array_keys($intervalos)) + 1) * 15 * 60;

for ($i = 0; $i <= $ultimo_segundo; ++$i) {
echo "\tsegundo_{$il},>=,0\n";

echo "general\n";

foreach ($corridas as $corrida) {
echo "\tsalida_{$corridal[’LegID’]}\n";

40

245
echo "binary\n'";
foreach ($corridas as $corrida) {
$pri = $corridal[’EarliestDepartureTime’];
250 $ult = $corridal[’LatestDepartureTime’];
for ($i = $pri; $i <= $ult; ++$i) {
echo "\tsalida_{$corridal[’LegID’]}_{$i}\n";
}
255 }

echo "end\n";
260 } file_put_contents ("model{$numero}.1lp", ob_get_clean());

ob_start(); {
foreach ($corridas as $corrida) {
265 echo "salida_{$corridal[’LegID’]} {$corridal’
CurrentDepartureTime ’]}\n";
}
} file_put_contents("model{$numero}.mst", ob_get_clean());
7>

41

10

15

20

25

30

B. Modified Mixed Integer Model Generator

<?7php

if ('isset ($argv[1], $argv[2])) {
die("Usage: {$argv [0]} #instance #granularity");

}

$numero = (int) $argv[1];

$precision = (int) $argv([2];

$instancia = json_decode(@file_get_contents("instance_data_{
$numero}. json.txt"), true);

$consumo = json_decode(@file_get_contents("power_data_{$numero}.

json.txt"), true);

if ('isset($instancia, $consumo)) {
die("{$argv[0]} {$argv[1]1},{$argv[2]}: unable to,read the input,

files");
}
if ($precision < 1 || $precision > 900 || 900 % $precision != 0) {
die("{$argv [0]} {Sargv[1]} {$argv[2]}: invalid granularity");
}
$corridas = [];

foreach ($instancial[’Trains’] as $trenes) {
foreach ($trenes[’Legs’] as $corrida) {
$corridas[$corridal[’LegID’]] = $corrida + [’TrainID’ =>
$trenes [’ TrainID’] 1;

foreach ($consumo[’Powerprofiles’] as $onda) {
$corridas[$ondal[’LegID’]][’Powerprofiles’] = $ondal[’Powerprofile
15

42

35

40

45

50

55

60

65

unset ($instancia);
unset ($consumo) ;

ob_start(); {

echo "minimize\n'";

echo "\tpromedio_intervalo\n";

echo "subject to\n";

function mapea($corridas, $atributo)

’

{
$arr = [1;
foreach ($corridas as $corrida) {
$arr[$corridal[$atributo]] [] = $corrida;
}
return $arr;
}
function compara_3vias($a, $b)
{
return 2 * ($a > $b) - ($a != $b);
}
function compara_llegadas($corridal, $corrida?2)
{
return compara_3vias($corridal[’CurrentDepartureTime’] +
$corridal [’ TravelTime’], $corrida2[’CurrentDepartureTime’]
+ $corrida2[’TravelTime’]);
}
function compara_salidas($corridal, $corrida?2)
{
return compara_3vias($corridal[’CurrentDepartureTime’],
$corrida2[’CurrentDepartureTime’]) ;
}

43

75 echo "\\\theadways\n";

foreach (mapea($corridas, ’TrackID’) as $corridas_via) {
usort ($corridas_via, ’compara_salidas’);

80 for ($i = 1; $i < count($corridas_via); ++$i) {
$corrida = $corridas_vial[$il;
$anterior = $corridas_vial[$i - 1];

echo "\tsalida_{$corridal’LegID’]} -, salida_{$anterior[’
LegID’]} >=_ {$anterior[’MinimumHeadwayTime >]}\n";
85 }

90 echo "\\\tstops_ at_ stations\n";

foreach (mapea($corridas, ’TrainID’) as $corridas_tren) {
usort ($corridas_tren, ’compara_salidas’);

95 for ($i = 1; $i < count($corridas_tren); ++3%i) {
$corrida = $corridas_tren[$il;
$anterior = $corridas_tren[$i - 1];
$viaje_con_parada = $anterior [’MinimumStoppingTime’] +

$anterior [’ TravelTime’];

100 echo "\tsalida_{$corridal[’LegID’]} -, salida_{$anterior[’
LegID’]},>=,{$viaje_con_paradal\n";

105

echo "\\\tconnections\n";

$llegadas = mapea($corridas, ’EndStationID’);
$salidas = mapea($corridas, ’StartStationID’);
110 $estaciones = array_unique (array_merge (array_keys($llegadas),
array_keys ($salidas)));

foreach ($estaciones as $estacion) {
if (!isset($llegadas[$estacion])) {
$llegadas[$estacion] = [];
115 }

44

120

125

130

135

140

145

150

155

if (!'isset($salidas[$estacion])) {
$salidas[$estacion] = [];

usort($llegadas [$estacion], ’compara_llegadas’);

usort ($salidas [$estacion], ’compara_salidas’);

foreach ($salidas[$estacion] as $salida) {

foreach ($llegadas[$estacion] as

$1llegada) {

$diferencia = $salidal[’CurrentDepartureTime’]
’CurrentDepartureTime’] + $llegadal’TravelTime’]);

if ($diferencia < 5) {
break;

3

if ($diferencia > 15) {
continue;

($1legadal

}
if ($salidal[’TrainID’] != $llegadal[’TrainID’]) {
$inferior = $llegadal[’TravelTime’] + b5;
$superior = $llegadal[’TravelTime’] + 15;
echo "\tsalida_{$salidal[’LegID’]}_ -ysalida_{$llegadal’
LegID’]1} >=y{$inferior}\n";
echo "\tsalida_{$salida[’LegID’]}_ -ysalida_{$llegadal’
LegID’]} <=, {$superior}F\n";
}
}
}
}
$intervalos = [1;

function accede($onda, $offset)

{
return ($offset < 0 || $offset >=
$offset]);

foreach ($corridas as $corrida) {

45

count ($onda) ? O

$onda [

160

165

170

175

180

185

190

195

$pri =
$ult

for ($
$blo
$blo

for
$i
}

echo "\\

foreach
$segun
$segun

$corridal’EarliestDepartureTime’];
$corrida[’LatestDepartureTime’];

i = $pri; $i <= $ult; ++%1i) {
que_ini = (int)($i / 15);
que_ult (int) (($i + $corridal[’TravelTime’]) / 15);

($j = $bloque_ini; $j <= $bloque_ult; ++$j) {
ntervalos [$j]l[$corridal’LegID’]1]1[] = $i;

\tlinearization constraints -, ,power ,consumption\n";

($intervalos as $bloque => $datos) {
do_ini = 15 * 60 * $bloque;
do_fin = 15 * 60 * ($bloque + 1);

$sumandos = [’promedio_intervalo’ J;

for ($

i = $segundo_ini; $i < $segundo_fin; $i += $precision) {

$contribuciones = [];

fore

$c

fo

if (

ach ($datos as $indice_corrida => $salidas) {
orrida = $corridas[$indice_corridal;

reach ($salidas as $salida) {

$contribucion = 0;

for ($j = 0; $j < $precision; ++$j) {
$contribucion += accede($corridal[’Powerprofiles’], $i
+ $§j - 60 * $salida) / (1 + (dint) (($i + $j) % 900
== O)) ;

if ($contribucion !'= 0) {
$contribuciones[] = "{$contribucion} salida {$corrida
[’LegID’]}_{$salidal}t";

empty ($contribuciones)) {

46

200

205

210

215

220

225

230

235

echo "\tsegmento_{$i}_ =,0\n";
}
else {
echo "\t", implode(’ +,’, $contribuciones), " -, segmento_{
$iru<=u0\n";

$sumandos [] = "segmento_ {$i}";

echo "\t", implode(’,-,’, $sumandos), ", ,>=,0\n";

echo "\\\tlinearization constraints_ -, integer to,binary,
variables\n";

foreach ($corridas as $corrida) {
$sumal = [1;
$sumap = [1;

$pri = $corridal[’EarliestDepartureTime’];
$ult $corridal[’LatestDepartureTime’];

for ($i = $pri; $i <= $ult; ++$i) {
$sumal [] = "salida_{$corridal’LegID’]} _{$i}";
$sumap [] "{$i} salida_{$corridal[’LegID’]}_{$il}";

}
echo "\t", implode(’ +,’, $sumal), ", =,1\n";

echo "\t", implode(’ +,’, $sumap), ", -y salida_ {$corridal[’LeglD
>1}u=u0\n";

echo "bounds\n'";

foreach ($corridas as $corrida) {
echo "\t{$corrida[’EarliestDepartureTime’]} <=, salida_{
$corridal[’LegID’]} <= {$corridal[’LatestDepartureTime ’]}\n";

$ultimo_segundo = (max(array_keys($intervalos)) + 1) * 15 * 60;

47

240

245

250

255

260

265

270

275

7>

for ($i = 0; $i < $ultimo_segundo; $i += $precision) {

echo "\tsegmento_{$i}, >=,0\n";

echo "general\n";

foreach ($corridas as $corrida) {

echo "\tsalida_{$corridal[’LegID’]}\n";

echo "binary\n';

foreach ($corridas as $corrida) {

$pri = $corridal[’EarliestDepartureTime’];
$ult = $corridal[’LatestDepartureTime’];

for ($i = $pri; $i <= $ult; ++$i) {

echo "\tsalida_{$corridal[’LegID’]}_{$i}\n";

echo "end\n";

} file_put_contents ("model{$numero} g{$precision}.lp",

ob_get_clean());

ob_start(); {
foreach ($corridas as $corrida) {

echo "salida_{$corridal[’LegID’]} {$corridal’

CurrentDepartureTime ’]}\n";

3

} file_put_contents ("model{$numero}.mst",

48

ob_get_clean());

1

10

15

20

25

30

C. Solution Formatter

<?7php

if ('isset ($argv[1], $argv[2])) {
die("Usage: {$argv [0]} #instance mst_file");

}

$numero = (int)$argv[1];

$archivo = $argv([2];

$consumo = json_decode(@file_get_contents("power _data_ {$numerol}.

json.txt"), true);
$respuesta = @file($archivo, FILE_IGNORE_NEW_LINES|
FILE_SKIP_EMPTY_LINES);

if (!'isset($respuesta, $consumo) || empty($respuesta)) {

die("{$argv [0]} {$argv[1]} {$argv[2]}: unable to, read the input,
files");

}

$res = new stdClass();

$res->Legs = new stdClass();

$corridas = [1;

$mst = [1;

foreach ($respuesta as $fila) {
$capturas = [J;

if (preg_match(’/salida_(\d+)_ ([-+]17\d+(\.\d+([eE][-+]17\d+)7)7)/
>, $fila, $capturas)) {
$id_corrida = $capturas[1];
$salida_corrida = (int)round($capturas[2]);

$res->Legs->{$id_corrida} = $salida_corrida;

$corridas[$id_corridal][’DepartureTime’] = $salida_corrida;
$mst[] = "salida {$id corridal} {$salida _corridal}t";

49

35

40

45

50

55

60

65

file_put_contents($archivo, implode("\n", $mst));
file_put_contents (preg_replace(’/\.mst$/i’, ’’, $archivo).’. json.
txt’, json_encode ($res, JSON_PRETTY_PRINT));

foreach ($consumo[’Powerprofiles’] as $onda) {
$corridas[$onda[’LegIiD’]][’Powerprofiles’] = $ondal[’Powerprofile
15

$segundos = array_f£ill (0, 17 * 15 *x 60 + 1, 0);

foreach ($corridas as $corrida) {
$inicial = 60 * $corridal[’DepartureTime’];

foreach ($corridal[’Powerprofiles’] as $segundo => $consumo) {
$segundos [$inicial + $segundo] += $consumo;

}
$intervalos = [1;
foreach (range(0, 16) as $bloque) {

$segundo_ini = 15 *x 60 * $bloque;
$segundo_fin = 15 * 60 * ($bloque + 1);

$sumando = 0;
for ($i = $segundo_ini; $i <= $segundo_fin; ++$i) {
$sumando += max($segundos[$i], 0) / (1 + (int)($i % 900 == 0))
) 5
$intervalos[] = $sumando;

echo "objective function value: ", max($intervalos) / 900, "\n";

50

10

15

20

25

30

D. Gurobi Interface

#include
#include
#include
#include

<fstream>
<iostream>
<string>

class callback_reto : public GRBCallback {

public:

callback_reto (GRBVar* v, int n, const char* i)
vars_(v), nvars_(n), instancia_ (i)

void callback()

{
b
{
if
b
b
private:

(where == GRB_CB_MIPSOL) {

std::ofstream ofs(instancia_ + std::string()+
to_string (getDoubleInfo (GRB_CB_MIPSOL_0BJ)) + std::
string(D)

auto val = getSolution(vars_, nvars_);

for (int i = 0; i < nvars_; ++i) {
ofs << vars_[i].get(GRB_StringAttr_VarName) <<

val[i] << ;
}

delete[] val;

GRBVar* vars_;
int nvars_;

const

};

char*x instancia_;

int main(int argc, const char*x argv)

51

std::

<<

35

40

45

50

55

if (argc < 5) {
std::cout << "Usage:." << argv[0] << 77 << "InputFile
ResultFile MIPFocus_ file\n";
return O;

auto env = GRBEnv();
env.set (GRB_IntParam_MIPFocus, std::atoi(argv([3]));
env.set (GRB_DoubleParam_MIPGap, 0);

auto modelo = GRBModel (env, argv[4]);
modelo.read (argv[1]);

auto callback = callback_reto(modelo.getVars(), modelo.get(

GRB_IntAttr_NumVars), argv[4]);
modelo.setCallback (&callback) ;
modelo.optimize ();

if (modelo.get (GRB_IntAttr_Status) == GRB_OPTIMAL) {
modelo.write (argv [2]) ;

3

52

